You are currently viewing Deformações na superfície de implantes após inserção e remoção imediata em osso denso de suíno: estudo experimental com MEV

Deformações na superfície de implantes após inserção e remoção imediata em osso denso de suíno: estudo experimental com MEV

Estudo analisa se as superfícies rugosas podem apresentar deformações e possível perda de partículas nanométricas após inserção e remoção imediata de implantes.

AUTORES

Vitório Campos da Silva
Cirurgião-dentista – Faculdade de Odontologia João Prudente (FAEE); Doutor em Patologia Celular e Molecular, e pós-doutorando em Medicina – Universidade de Brasília.
Orcid: 000-0002-7968-6951.

Gustavo Henrique Soares Takano
Médico patologista docente – Universidade de Brasília.
Orcid: 0000-0001-5553-3582.

RESUMO

Objetivo: analisar se as superfícies rugosas podem apresentar deformação e possível perda de partículas de titânio e outras, de dimensões nanométricas, após inserção e remoção imediata de implantes em fêmur de suínos com alta densidade óssea. Material e métodos: oito suínos Large White receberam 64 implantes de superfície rugosa (4,1 mm x 10 mm), divididos em quatro grupos (G1: Titaniumfix; G2: Biomet 3i; G3: Straumann/Neodent; G4: Conexão), nos fêmures direito e esquerdo. Antes e após a inserção e retirada dos implantes utilizando alto torque em osso cortical denso (150 Ncm), suas superfícies foram analisadas por microscopia eletrônica de varredura (MEV) e o osso foi coletado com fresa analisado sob microscopia óptica. Resultados: nos grupos 1, 2 e 3, houve deformação e possível perda de partículas de biomateriais; no grupo 4, apesar da presença de microfissuras, esta superfície mostrou menor deformação/perda ou deslocamento de partículas. Conclusão: o uso de alto torque de inserção em osso com alta densidade resulta em deformação da superfície e possível perda de partículas de titânio.

Palavras-chave – Torque de inserção; Microscopia eletrônica de varredura; Deformação na superfície do implante; Implante dentário.

ABSTRACT

Objective: to analyze whether rough dental implants surfaces may present deformation and possible loss of titanium particles and other types of nanometric dimensions, after insertion and immediate removal of implants in the femur of pigs with high bone density. Material and methods: eight Large White pigs received 64 implants with a rough surface (4.1 x 10 mm), divided into four groups (G1: Titaniumfix; G2: Biomet 3i; G3: Straumann/Neodent; G4: Conexão), in right and left femurs. Before and after insertion and removal of implants using high torque in cortical dense bone (150 Ncm), the surfaces were analyzed by scanning electron microscopy (SEM) and the bone was collected and seen under optical microscopy. Results: in groups 1, 2 and 3, there was deformation and possible loss of biomaterial particles; in group 4, despite the presence of microcracks, the surface showed less deformation/ loss or displacement of particles. Conclusion: the use of high insertion torque in bone with high density results in surface deformation and possible loss of titanium particles from the dental implant.

Key words – Insertion torque; SEM; Implant surface deformation; Dental implant.

Recebido em ago/2021
Aprovado em ago/2021

Referências

  1. Albrektsson T, Brånemark PI, Hansson HA, Kasemo B, Larsson K, Lundstrom I. The interface zone of inorganic implants in vivo: titanium implants in bone. Ann Biomed Eng 1993;11:1-27.
  2. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater 1992;10(3):153-201.
  3. Martin W, Lewis E, Nicole A. Local risk factors for implant therapy. Int J Oral Maxillofac Implants 2009;24(suppl.):28-38.
  4. Hayashi K, Inadome T, Tsumura H, Nakashima Y, Sugioka Y. Effect of surface roughness of hydroxiapatite-coated titanium on the bone-interface shear strength. Biomaterials 1994;15(14):1187-91.
  5. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29(12):1567-75.
  6. Goldberg V, Stevenson S, Feighan J, Davy D. Biology of grit-blasted titanium alloy implants. Clin Orthop 1995;319:122-9.
  7. Chehroudi B, McDonnell D, Brunett DM. The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res 1997;34(3):279-90.
  8. Wennerberg A, Hallgren C, Johansson C, Danielli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 1998;9(1):11-9.
  9. Piattelli A, Manzon L, Scarano A, Paolantonio M, Piattelli M. Histologic and histomorphometric analisis of the bone response to machined and sandblasted titanium implants: an experimental study in rabbits. Int J Oral Maxillofac Implants 1998;13(6):805-10.
  10. Jansen JL, van der Waerden JPCM, de Groot K. Fibroblast and epithelial cell interactions with surface-treated implant materials. Biomaterials 1991;12(1):25-31.
  11. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials 1991;12(6):593-6.
  1. Ong JL, Prince CW, Lucas LC. Investigation on the in vitro cellular response to Ca-P and Ti surfaces [abstract]. J Dent Res 1992;71:184.
  2. Michaels CM, Keller JC, Stanford CN. In vitro periodontal ligament fibroblast attachment to plasma-cleaned titanium surfaces. J Oral Implantol 1991;17(2):132-9.
  3. Baier RE, Meyer AE, Natiella RH, Carter JM. Surface properties determine bioadhesive outcomes: methods and results. J Biomed Mater Res 1984;18(4):337-55.
  4. Kasemo B, Lausmaa J. The Biomaterial-tissue interface and its analogues in surface science and technology. In: JE Davies (Ed.) Bone-biomaterial interface. University of Toronto Press, Toronto. 1991. p.19-32.
  5. Schwartz Z, Martin JY, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on chondrocyte proliferation matrix production and differentiation depends on the state of cell maturation. J Biomed Mater Res 1996;30(2):145-55.
  6. Garvey BT, Bizios R. A transmission electron microscopy examination of the interface between osteoblasts and metal biomaterials. J Biomed Mater Res 1995;29(8):987-92.
  7. Buser D, Schenk RK, Steinemann S, Fiorelline JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants: a histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25(7):889-902.
  8. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford DJ. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG 63). J Biomed Mater Res 1995;29(3):389-401.
  9. Piattelli A, Piattelli M, Scarano A. Simultaneous demonstration of alkaline and acid phosphatase activities at bone implant interface and at the epiphyseal growth plate in plastic-embedded undemineralised tissue. Biomaterials 1997;18(7):545-9.
  10. Boyan BD, Batzer R, Kieswetter K, Liu Y, Cochran DL, Szmuckler-Moncler S. Titanium surface roughness alter responsiveness of MG 63 osteoblast-like cells to 1 alfa,25-(OH)2D3. J Biomed Mater Res 1998;39(1):77-85.
  11. Campos V, Melo RCN, Silva LP, Aquino EN, Castro MS, Fontes W. Characterization of neutrophil adhesion to different titanium surfaces. Bull Mater Sci 2014;37(1):157-66.
  12. Albrektsson T, Jacobsson M. Bone-metal interface in osseointegration. J Prosthet Dent 1987;57(5):597-607.
  13. Goyer RA. Metals Handbook (vol. 2, 10th ed.) Cleveland: American Society for Metals. 1990. p.1.233.
  14. Kumazawa R, Watari W, Takashi N, Tanimura Y, Uo M, Totsuka Y. Effects of Ti ions and particles on neutrophils function and morphology. Biomaterials 2002;23(17):3757-64.
  15. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311(5761):622-7.
  16. Bowman DM. More than a decade on: mapping todays´regulatory and policy landscapes following the publication of Nanoscience and nanotechnologies: opportunities and uncertainties. NanoEthics 2017;11(2):169-86.
  17. Bosman SJ, Nieto SP, Patton WC, Jacobson JD, Corselli JU, Chan PJ. Development of mammalian embryos exposed to mixed-size nanoparticles. Clin Exp Obstet Gynecol 2005;32(4):222-4.
  18. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol 2009;4(12):876-83.
  19. Brunski JB. Biomechanics of oral implants: future research directions. J Dent Educ 1988;52(12):775-87.