RESUMO
Demonstrar, através de um caso clínico, a recuperação de estruturas ósseas e gengivais em região anterior superior associadas a células para individualização da reabilitação cerâmica. O planejamento reverso foi executado em consenso com o paciente, e a técnica de tunelização com biomaterial xenógeno e L-PRF foi usada para a reconstrução de osso em altura e espessura. A fração vascular estromal (FVE) obtida a partir da biopsia colhida da tuberosidade no dia da cirurgia e encaminhada ao Centro de Processamento Celular foi injetada na área enxertada 72 horas depois do procedimento reconstrutivo. Após consolidação, aos seis meses foram instalados os implantes nos elementos 11, 21 e 22, e o enxerto gengival foi desepitelizado. Por compressão dos pônticos da prótese provisória para reabertura atraumática, aos quatro meses foram instalados componentes protéticos e provisórios sobre implantes para conformação do perfil de emergência. As próteses cerâmicas em infraestruturas de zircônia foram estratificadas na cor A2 e instaladas depois de seis meses dos provisórios sobre implantes. A associação de biomaterial, fibrina leucoplaquetária autóloga e fração vascular estromal demostrou sucesso clínico pela necessidade reconstrutiva para individualização dos elementos dentários com baixa morbidade.
Palavras-chave – Fração vascular estromal; Próteses dentárias; Biomateriais; PRF; Engenharia tecidual.
ABSTRACT
We aimed to demonstrate, through a clinical case description, the recovery of bone and gingival structures in the upper anterior region associated with cells for individualization of ceramic rehabilitation. The reverse treatment planning was performed in consensus with the patient, followed by the tunneling technique with xenogeneic biomaterial and L-PRF for bone reconstruction in height and thickness. After, the stromal vascular fraction (SVF) was obtained from the tuber biopsy on the day of surgery and sent to the Cell Processing Center, being injected into the grafted area 72 hours after the reconstructive procedure. After 6 months of consolidation, dental implants (elements #11, 21, 22) were placed in conjunction with the de-epithelialized gingival graft. Upon soft tissue compression by the temporary pontic prostheses for atraumatic reopening, 4 months later, prosthetic components, and dental implant provisional restorations were installed to configurate the emergence profiles. Finally, the zirconium oxide ceramic infrastructures were veneered with A2 shade and installed six months after the provisional restorations. The association of biomaterials, autologous L-PRF and stromal vascular fraction provided clinical success and low morbidity in this reconstructive task to individualize the prosthetic dental elements.
Key words – Stromal vascular fraction; Dental prostheses; Biomaterials; PRF; Tissue engineering.
Referências
- James AW, Zhang X, Crisan M, Hardy WR, Liang P, Meyers CA et al. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS ONE 2017;12(5):e0177308.
- Wittenburg G, Flade V, Garbe AI, Lauer G, Labudde D. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone. Brit J Oral Maxillofac Surg 2014;52(5):409-14.
- Zanetti AS, McCandless GT, Chan JY, Gimble JM, Hayes DJ. In vitro human adipose-derived stromal/stem cells osteogenesis in akermanite: poly-ε-caprolactone scaffolds. J Biomater Appl 2014;28(7):998-1007.
- Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 2011;108(15):6139-44.
- Hynes K, Bright R, Marino V, Ng J, Verma PJ, Gronthos S et al. Potential of iPSC-derived mesenchymal stromal cells for treating periodontal disease. Stem Cells Int 2018;2018:2601945.
- Hung TY, Lin HC, Chan YJ, Yuan K. Isolating stromal stem cells from periodontal granulation tissues. Clin Oral Investig 2012;16(4):1171-80.
- Im GI. Bone marrow-derived stem/stromal cells and adipose tissue-derived stem/stromal cells: their comparative efficacies and synergistic effects. J Biomed Mater Res A 2017;105(9):2640-8.
- Gronthos S, Akintoye SO, Wang C-Y, Shi S. Bone marrow stromal stem cells for tissue engineering. Periodontol 2000 2006;41:188-95.
- Doi K, Kubo T, Hayashi K, Imura K, Akagawa Y. Development of cell-hybrid artificial bone: effect of osteogenic differentiation of bone marrow stromal stem cells on bone formation with newly developed interconnected porous calcium hydroxyapatite. Dent Mater J 2007;26(2):162-9.
- Buckner CD. Autologous bone marrow transplants to hematopoietic stem cell support with peripheral blood stem cells: a historical perspective. J Hematol 1999;8(3):233-6.
- Yang Y, Rossi FM, Putnins EE. Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials 2010;31(33):8574-82.
- Jafari N, Khoradmehr A, Moghiminasr R, Habashi MS. Mesenchymal stromal/stem cells-derived exosomes as an antimicrobial weapon for orodental infections. Front Microbiol 2022;12:795682.
- Conserva E, Pisciotta A, Borghi F, Nasi M, Pecorini S, Bertoni L et al. Titanium surface properties influence the biological activity and FASL expression of craniofacial stromal cells. Stem Cells Int 2019;2019:4670560.
- Cao J, Wang L, Du ZJ, Liu P, Zhang YB, Sui JF et al. Recruitment of exogenous mesenchymal stem cells in mandibular distraction osteogenesis by the stromal cell-derived factor-1/chemokine receptor-4 pathway in rats. Br J Oral Maxillofac Surg 2013;51(8):937-41.
- Wang Z, Weng Y, Lu S, Zong C, Qiu J, Liu Y et al. Osteoblastic mesenchymal stem cell sheet combined with Choukroun platelet-rich fibrin induces bone formation at an ectopic site. J Biomed Mater Res B Appl Biomater 2015;103(6):1204-16.
- Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 2007;25(11):2896-902.
- Khan MM, Butt SA, Chaudhry AA, Rashid A, Ijaz K, Majeed A et al. Osteogenic induction with silicon hydroxyapatite using modified autologous adipose tissue-derived stromal vascular fraction: in vitro and qualitative histomorphometric analysis. Materials (Basel) 2022;15(5):1826.