You are currently viewing O uso de sinvastatina associado ao arcabouço de PLGA

O uso de sinvastatina associado ao arcabouço de PLGA

RESUMO

Objetivo: realizar uma revisão da literatura para avaliar o impacto da combinação da sinvastatina com arcabouços de ácido polilático- -co-glicólico (PLGA) na promoção da regeneração óssea. Material e métodos: foi realizada uma busca na literatura por artigos que examinaram a sinvastatina como agente osseoindutor em diversas concentrações, associada ao PLGA como osseocondutor, em diferentes configurações de arcabouços, com o intuito de estimular a regeneração óssea. Resultados: foram incluídos na análise seis estudos pré-clínicos realizados em animais e dois estudos in vitro. Dos seis estudos pré-clínicos incluídos, cinco indicaram que a sinvastatina em arcabouços de PLGA pode ter um impacto positivo na regeneração óssea, estimulando a proliferação e diferenciação celular, bem como influenciando a formação de osso em modelos animais. Os estudos in vitro demonstraram maior proliferação celular em arcabouços contendo a sinvastatina. Conclusão: a sinvastatina combinada com arcabouços de PLGA pode ser uma alternativa aos métodos tradicionais de regeneração óssea, sendo eficaz nos estudos incluídos no presente trabalho.

Palavras-chave – Ácido polilático-co-glicólico; Sinvastatina; Osteocondução; Revisão da literatura.


ABSTRACT

Objective: to conduct a literature review to assess the impact of the combination of simvastatin with PLGA scaffolds on promoting bone regeneration. Material and methods: six pre-clinical studies conducted in animals and two in vitro laboratory studies were included in the analysis. These studies examined simvastatin as an osteoinductive agent in various concentrations and PLGA as an osteoconductive agent in different scaffold configurations to stimulate bone regeneration. Results: of the six pre-clinical studies, five indicated that simvastatin associated to PLGA scaffolds may have a positive impact in bone regeneration, stimulating cell proliferation and differentiation. Conclusion: literature shows that the combination of simvastatin with PLGA scaffolds could be an alternative to traditional methods of bone regeneration, proving to be an effective and safe solution in the studies included in this work.

Key words – Poly (lactic-co-glycolic acid); Simvastatin; Osteoconduction; Literature review.

Referências

  1. Buser D, Dula K, Hirt HP, Schenk RK. Lateral ridge augmentation using autografts and barrier membranes: a clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg 1996;54(4):420-32.
  2. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017;3(1):23.
  3. Hämmerle CH, Karring T. Guided bone regeneration at oral implant sites. Periodontol 2000 1998;17:151-75.
  4. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 2008;34(8):962-9.
  5. Asahara T, Kalka C, Isner JM. Stem cell therapy and gene transfer for regeneration. Gene Therapy 2000;7(6):451-7.
  6. Deschamps IS, Magrin GL, Magini RS, Fredel MC, Benfatti CAM, Souza JC. On the synthesis and characterization of β-tricalcium phosphate scaffolds coated with collagen or poly (D, L-lactic acid) for alveolar bone augmentation. Eur J Dent 2017;11(4):496-502.
  7. Marcos JJL, Perrotti V, Iaculli F, Aragones Á, Benfatti CAM, Magrin GL et al. Physical and mechanical properties of composite scaffolds with or without collagen impregnation. Appl Sci 2019;9(20):4296.
  8. Chappard D. Bone modeling and remodeling during osseointegration. Rev Stomatol Chir Maxillofac Chir Orale 2013;114(3):159-65.
  9. Carreira AC, Lojudice H, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins. J Dent Res 2014;93(4):335-45.
  10. Whang K, McDonald J, Khan A, Satsangi N. A novel osteotropic biomaterial OG-PLG: synthesis and in vitro release. J Biomed Mater Res A 2005;74(2):237-46.
  11. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999;286(5446):1946-9.
  12. Thylin MR, McConnell JC, Schmid MJ, Reckling RR, Ojha J, Bhattacharyya I et al. Effects of simvastatin gels on murine calvarial bone. J Periodontol 2002;73(10):1141-8.
  13. Moriyama Y, Ayukawa Y, Ogino Y, Atsuta I, Koyano K. Topical application of statin affects bone healing around implants. Clin Oral Implants Res 2008;19(6):600-5.
  14. Fang W, Zhao S, He F, Liu L, Yang G. Influence of simvastatin-loaded implants on osseointegration in an ovariectomized animal model. Biomed Res Int 2015;2015:831504.
  15. Barbanti SH, Zavaglia CA, Duek EA. Polímeros biorreabsorvíveis na engenharia de tecidos. Polímeros 2005;15(1):13-21.
  16. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Contr Release 2012;161(2):505-22.
  17. Nath SD, Son S, Sadiasa A, Min YK, Lee BT. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. International J Pharm 2013;443(1-2):87-94.
  18. Santos DFS, Franco JMPL, Xavier FG, Aragones A, Xavier CCF, Montagner AM. Cell growth and viability analysis in poli membranes (L-lactic acid-co-glycolic acid): an in vitro study. Rev Gaúcha Odontol 2019;66(4):e20190024.
  19. Venkatesan N, Liyanage ADT, Castro-Núñez J, Asafo-Adjei T, Cunningham LL, Dziubla TD et al. Biodegradable polymerized simvastatin stimulates bone formation. Acta Biomater 2019;93:192-9.
  20. Liu YS, Ou ME, Liu H, Gu M, Lv LW, Fan C et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration. Biomaterials 2014;35(15):4489-98.
  21. Ferreira LB, Bradaschia-Correa V, Moreira MM, Marques ND, Arana-Chavez VE. Evaluation of bone repair of critical size defects treated with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres in rat calvaria. J Biomater Appl 2014;29(7):965-76.
  22. Assaf K, Duek EAR, Oliveira NM. Efficacy of a combination of simvastatin and poly (DL-lactic-co-glycolic acid) in stimulating the regeneration of bone defects. Materials Res 2012;16(1):215-20.
  23. Swati S, Gopalkrishna P, Nayak UY, Ginjupalli K, Hrishi TS, Chandrashekar C et al. Simvastatin in polymer bio scaffold for bone regeneration. An in vitro and in vivo analysis. Stomatologija 2021;23(4):114-20.
  24. Mendes Junior D, Domingues JA, Hausen MA, Cattani SMM, Aragones A, Oliveira ALR et al. Study of mesenchymal stem cells cultured on a poly (lactic-co-glycolic acid) scaffold containing simvastatin for bone healing. J Appl Biomater Funct Mater 2017;15(2):133-41.
  25. Loureiro C. PRP ou BMPs: qual a melhor opção para enxertia e aceleração de osseointegração nas reabilitações com implantes? Revisão de literatura. Innovations Implant Journal 2010;5(2):45-50.
  26. Michels R, Magrin GL, Cruz ACC, Magini RS, Benfatti CAM. Functionalization of a volume-stable collagen matrix using liquid platelet-rich fibrin: a case report presenting a new approach for root coverage. Case Rep Dent 2023;2023:3929269.
  27. Scaglione S, Lazzarini E, Ilengo C, Quarto R. A composite material model for improved bone formation. J Tissue Eng Regen Med 2010;4(7):505-13.
  28. Kupcsik L, Meurya T, Flury M, Stoddart M, Alini M. Statin-induced calcification in human mesenchymal stem cells is cell death related. J Cell Mol Med 2009;13(11-12):4465–73.
  29. Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. J Biomater Appl 1993;4(1):13-27.
  30. Magini EB, Matos LDO, Curtarelli RB, Sordi MB, Magrin GL, Flores-Mir C et al. Simvastatin embedded into poly (lactic-co-glycolic acid)-based scaffolds in promoting preclinical bone regeneration: a systematic review. Appl Sci 2022;12(22):11623.