You are currently viewing Análise in vitro do selamento microbiológico entre componentes protéticos e implantes dentários confeccionados por manufatura aditiva

Análise in vitro do selamento microbiológico entre componentes protéticos e implantes dentários confeccionados por manufatura aditiva

Estudo avalia a capacidade de selamento bacteriano e adaptação de implantes cone-morse produzidos por manufatura aditiva.


AUTORES

Lucas De Aguiar Greco
Mestrando em Implantodontia – Faculdade São Leopoldo Mandic.
Orcid: 0000-0003-3889-1278.

Marcelo Henrique Napimoga
Diretor de pós-graduação, pesquisa e extensão – Faculdade São Leopoldo Mandic.
Orcid: 0000-0003-4472-365X.

RESUMO

Objetivo: avaliar, mediante análise microbiológica, a capacidade de selamento bacteriano e adaptação de implantes de conexão interna cônica (cone-morse) de plataformas protéticas do tipo regular (Ø 3,5 mm) e slim (Ø 3 mm) produzidos por manufatura aditiva da marca Plenum. Material e métodos: foram utilizados 38 implantes e seus respectivos pilares protéticos indexados com torque de inserção de 20 Ncm. Duas metodologias foram empregadas, sendo que na primeira foi realizada a inserção de colônia de Escherichia coli na porção interna do implante seguida da instalação do componente protético. Os conjuntos compostos por implantes modelo regular Ø 3,5 mm (n=5) e modelo slim Ø 3 mm (n=5) foram imersos em meio de cultura Brain Heart Infusion (BHI), sendo observado se houve a proliferação bacteriana através do turvamento do meio de cultura. Na segunda metodologia, os componentes protéticos foram torqueados aos implantes – grupos compostos por implante modelo regular (n=10) e modelo slim (n=10) –, os quais foram imersos em suspensão de Escherichia coli e incubados a 37ºC. Após 14 dias, os pilares foram separados dos respectivos implantes e avaliada a presença de contaminação bacteriana após desinfecção da superfície externa. Resultados: tanto os implantes regular quanto os implantes slim da marca Plenum apresentaram 100% de capacidade de selamento com seus respectivos componentes protéticos, em ambos os testes utilizados. Conclusão: os implantes dentários de conexão protética tipo cone-morse fabricados via tecnologia de impressão 3D apresentaram 100% de selamento entre o implante e seu componente protético, para os dois modelos de implantes testados.

Palavras-chave – Selamento biológico; Implante dentário; Conexão interna cônica; Manufatura aditiva; Impressão 3D; Pilar/implante; Peri-implantite.

ABSTRACT

Objective: to evaluate the in vitro ability of bacterial sealing and adaptation of conical internal connection implant (Morse taper) of regular (Ø 3.5 mm) and slim (Ø 3 mm) platforms produced by Plenum additive manufacturing. Material and methods: thirtyeight implants and their respective indexed prosthetic abutments were used, with an insertion torque of 20 Ncm. Two methodologies were used, the fi rst being the insertion of Escherichia coli strain in the internal portion of the implant followed by the installation of the prosthetic component. Sets consisting of regular implants Ø 3.5 mm (n=5) and slim model implants Ø 3 mm (n=5) were immersed in Brain Heart Infusion (BHI) culture medium and observed if there was bacterial proliferation through the turbidity of the culture medium. In the second methodology, the prosthetic components were torqued to the implants and the groups were composed of the regular model implant (n=10) and the slim model implant (n=10), which were immersed in Escherichia coli suspension and incubated at 37ºC. Aft er 14 days, the abutments were separated from the respective implants, and the presence of bacterial contamination was evaluated aft er disinfection of the external surface. Results: the results showed that both regular and slim implants from the Plenum brand showed 100% sealing capacity with their respective prosthetic components in both tests used. Conclusion: Morse taper prosthetic connection dental implants manufactured using 3D printing technology showed 100% sealing between the implant and its prosthetic component, for the two dental implant models tested.

Key words – Biological sealing; Dental implant; Conical internal connection; Addition manufacturing; 3D printing; Abutment/ implant; Peri-implantitis.

Recebido em jan/2022
Aprovado em jan/2022

Referências

  1. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015;2015:791725
  2. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int 2016;2016:6285620
  3. Naves MM, Menezes HH, Magalhães D, Ferreira JA, Ribeiro SF, de Mello JD et al. Effect of macrogeometry on the surface topography of dental implants. Int J Oral Maxillofac Implants 2015;30(4):789-99.
  4. Alencar MASS, Martinez EF, Figueiredo FC, de Lima e Silva AR, Protazio JE, Bertamoni M et al. The evaluation of osteoblastic cell behavior on treated titanium surface. Open Dent J 2020;14:1-6.
  5. Carmo Filho LCD, Marcello-Machado RM, Castilhos ED, Del Bel Cury AA, Faot F. Can implant surfaces affect implant stability during osseointegration? A randomized clinical trial. Braz Oral Res 2018;32:e110.
  6. Vilela Júnior RA, Aranha LC, Elias CN, Martinez EF. In vitro analysis of prosthetic abutment and angulable frictional implant interface adaptation: mechanical and microbiological study. J Biomech 2021;128:110733.
  7. Li L, Lee J, Amara HB, Lee JB, Lee KS, Shin SW et al. Comparison of 3d-printed dental implants with threaded implants for osseointegration: an experimental pilot study. Materials (Basel) 2020;13(21):4815.
  8. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 2016;34(3):369-85.
  9. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 2008;24(11):1525-33.
  10. Tunchel S, Blay A, Kolerman R, Mijiritsky E, Shibli JA. 3D printing/additive manufacturing single titanium dental implants: a prospective multicenter study with 3 years of follow-up. Int J Dent 2016;2016:8590971.
  11. Alves DCC, de Carvalho PSP, Elias CN, Vedovatto E, Martinez EF. In vitro analysis of the microbiological sealing of tapered implants after mechanical cycling. Clin Oral Investig 2016;20(9):2437-45.
  12. Peruzetto WM, Martinez EF, Peruzzo DC, Joly JC, Napimoga MH. Microbiological seal of two types of tapered implant connections. Braz Dent J 2016;27(3):273-7.
  13. Costa GN, Martinez EF, Ruellas AM, Peruzzo DC, Joly JC, Napimoga MH. Microbiological sealing analysis of a tapered connection and external hexagon system. Int J Dent 2017;2017:3849085.
  14. Annunziata M, Guida L. The effect of titanium surface modifications on dental implant osseointegration. Front Oral Biol 2015;17:62-77.
  15. De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W et al. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol 2000 2017;73(1):218-27.
  16. Lang NP, Berglundh T, Working Group 4 of Seventh European Workshop on Periodontology. Periimplant diseases: where are we now? Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011;38(suppl.11):178-81.
  17. Di Girolamo M, Calcaterra R, DI Gianfilippo R, Arcuri C, Baggi L. Bone level changes around platform switching and platform matching implants: a systematic review with meta-analysis. Oral Implantol (Rome) 2016;9(1):1-10.
  18. Pournasrollah A, Negahdari R, Gharekhani V, Torab A, Jannati Ataei S. Investigating the effect of abutment-implant connection type on abutment screw loosening in a dental implant system using finite element methods. J Dent Res Dent Clin Dent Prospects 2019;13(4):289-97.
  19. Lops D, Stocchero M, Motta Jones J, Freni A, Palazzolo A, Romeo E. Five degree internal conical connection and marginal bone stability around subcrestal implants: a retrospective analysis. Materials (Basel) 2020;13(14):3123.
  20. Raoofi S, Khademi M, Amid R, Kadkhodazadeh M, Movahhedi MR. Comparison of the effect of three abutment-implant connections on stress distribution at the internal surface of dental implants: a finite element analysis. J Dent Res Dent Clin Dent Prospects 2013;7(3):132-9.
  21. Nascimento C, Miani PK, Pedrazzi V, Gonçalves RB, Ribeiro RF, Faria ACL et al. Leakage of saliva through the implant-abutment interface: in vitro evaluation of three different implant connections underloaded and loaded conditions. Int J Oral Maxillofac Implants 2012;27(3):551-60.
  22. Campelo C, Martinez EF, Peruzzo DC, Joly JC, Napimoga MH. Avaliação in vitro do selamento bacteriano comparando três diferentes tipos de conexões de implantes. INPerio 2019;4(4):661-7.